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Envelope solitons and holes for sine-Gordon and non - 1’ inear 
Klein-Gordon equations 

A S Sharma and B Buti 
Physical Research Laboratory, Navrangpura Ahmedabad 380009, India 

Received 31 December 1975, in final form 26 April 1976 

Abstract. The non-linear Schrodinger equations governing the evolution of the plane wave 
solutions of the sine-Gordon and the non-linear Klein-Gordon equations are derived. The 
former is unstable against modulational instability and thus evolves into envelope solitons. 
The latter however can be unstable or stable depending on the sign of the cubic term and 
can accordingly admit envelope soliton or hole solutions. 

1. Introduction 

The evolution of a variety of physical systems is governed by the equation 

Q f f  - Q x x  + V’(Q) = 0, (1) 

where V’(@> is a non-linear function of @ and may be taken as the derivative of a 
potential energy V(@) (Barone et a1 1971, Whitham 1974). For V(@) = -cos @, 
equation (1) becomes the sine-Gordon (SG) equation, namely 

@.,,-cP,,+sin@=O, (2) 

and when V ( @ )  = Q 2 / 2  + aQ4/4, we get the non-linear Klein-Gordon (NKG) equation, 

-axx +@++a3= 0. (3) 

In equations (2) and (3) the variables @, x and t ,  and the constant a have been made 
dimensionless by appropriate normalizations. Equation (3) corresponds to a small 
amplitude expansion of equation (2) when a = -1/6. This equation describes the 
many-body behaviour of elementary particles (Schiff 195 1). Many physical systems 
represented by equation (2) are described by Barone et a1 (1971) and Whitham (1974). 
This equation arises in the study of Josephson junctions, dislocations in crystals, 
ferromagnetic materials, laser pulse propagation, etc. Also based on equation (2), 
Perring and Skyrme (1962) have discussed the strong interaction among elementary 
particles. A lucid discussion of the relevance of equations (2) and (3) to quantum field 
theory is given in the recent review by Rajaraman (1975). The modulational instability 
of equation (3) has been studied by Asano et al (1969) by using the reductive 
perturbation method (Taniuti and Yajima 1969). 

Here we study the modulational instability and then obtain the localized stationary 
solutions of equations (2) and (3). For this purpose we use the multiple space-time 
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method (Kakutani and Sugimoto 1974, Buti 1976, Sharma and Buti 1976) toobtain the 
non-linear Schrodinger (NLS) equations which describe the slow variations of the 
amplitudes of the plane wave solutions of these equations. 

2. Sine-Gordon equation 

In order to study the envelope properties of the SG equation, we use the transformation 
4 = tan(@/4); equation (2) then reduces to 

(1 + 42>(4,1 - 4 x x  + 4) - 24(& - 4: + 4J2) = 0. (4) 

The NLS equation describing the envelope of the plane wave solutions of this equation 
can be derived as follows. 

Let us consider a perturbation solution of equation (4) of the form 

4 =E+l(a, 6, +)+E242(a, a, +I+ . . . , ( 5 )  

where a is the complex amplitude and + = kx -ut is the phase factor (6 is the complex 
conjugate of a ) .  The scalar 4 is a real function of x and t only through a, 6 and +. The 
slow variations of the amplitudes are defined by 

aa 
at 
-= EAI +e2A2+ . . . and 

aa 
ax 
- = c B I + E ~ B ~ +  . . . ,  

To lowest order (order E ) ,  equation (4) has the plane wave solution given by 

41 = a exp(i$) +cc, 

where cc represents the complex conjugate, w and k satisfy the linear dispersion 
relation 

(6) 
2 2  D ( w , k ) = - w  + k  + 1 = 0 .  

The equation to order e 2  is 

2 a242 2 a 2 4 2  
0 -- k ~ + 4 ~ = 2 i o  a* (7) 

The terms on the right-hand side give rise to resonant secularity and this is removed by 
the condition 

Ai+V,BI=O 

where V, = k / o  is the group velocity. The secular free solution of equation (7) is then 
given by 

cp2 = b(a, 6 )  exp(i+) +cc 

where b(a, 6 )  is a function of a and 6, but a constant with respect to 4. Equation (4) to 
order e3 may similarly be written down; the condition for the removal of the resonant 
singularity in this case is simply 

i(Az + V'B,) +- 



Envelope solitons and holes 1825 

From the definitions we know that 

aa B1 B ‘ + B  aB - >=- aB a2a 
aii ax:’ 1 aa 1 aa AI B A2=---, 2 -  at2 E ax2 E 

where t2 = E 2 t ,  x 2  = E ~ X  and x1  = E X .  Equation (8) can thus be rewritten as 

1 dV a2a 4 
i -+v-  +-A- +-Ial2a = 0,  ‘aa*4) 2 dk ax: w (:: 

which with a coordinate transformation 

1 
.$ = -(xz - V,t2) = x i  - Vgtl = E ( X  - V,t>, 

E 

2 r = t 2  = E t 1  = E  t ,  

reduces to 

aa a2a 
a7 a t  i--+p--g+qlal2a = 0 ,  

where 

4 
q =-. 

l d V , -  1 
and P = j x - S  0 

(9) 

Equation (9) is the non-linear Schrodinger equation governing the envelope properties 
of the plane wave solutions of equation (4). 

To investigate the stability of equation (9) against long wavelength perturbations we 
take (Hasegawa 1975): 

a = p l / 2  (6, 7) exp(ic+(t, 711, 

so that it can be separated into real and imaginary parts. On linearizing the resulting 
equations as 

and since according to equation (lo), pq = 2 / w 4  > 0 we find that the perturbations with 
K < (4~p; ’~ )  are unstable. These equations have the localized stationary solutions 

P = Ps sech2[(sPs/2p)1’251, (11) 

where ps is a constant andp, 4 are given by equation (10). This is an envelope soliton. 

3. Non-linear Klein-Gordon equation 

The NLS equation describing the envelope of the plane wave solutions of the NKG 
equation (equation ( 3 ) ) ,  can be obtained in the same manner as above by using the 
multiple space-time method. On considering a perturbation expansion of the form of 
equation (9, we find that the plane wave solutions of equation (3) satisfy the dispersion 
relation given by equation (6) .  The condition for the removal of the resonant secularity 
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in equation (3) to order e3  yields the NLS equation, given by equation (9), with the 
coefficients p and 4 given by 

3a 3ff 
and p q =  -7. 1 

2w 4 = - %  46J p = 3 ,  

These coefficients are identical to the ones obtained by Asano eta1 (1969). If a < 0, the 
plane wave solutions of the NKG equation are modulationally unstable and have 
envelope soliton solutions, as given by equation (1 1). On the other hand if a > 0, these 
plane waves are modulationally stable and have the envelope hole solutions of the form 

p =pl{l -i2 sech2[ (~p4~p~/2p2)”2~~ l } ,  

where p ,  q are as defined in equation (12), p1 is the asymptotic value of the wave 
amplitude and 6 the depth of the modulation with respect to this value (Hasegawa 
1975). This solution represents a depression, Le., a region characterized by the absence 
of the wave intensity, propagating with the group velocity V,. 

As pointed out earlier, equation (3) corresponds to the small amplitude expansion of 
equation (2) when a = -1/6. On putting this value of a in equation (12) we get 
p q  = 1/(804) > 0 and thus under this approximation also the plane wave solutions of the 
SG equation are modulationally unstable and hence the equation admits envelope 
solitons. 

Here we have studied the envelope properties of the sine-Gordon equation by 
transforming it into the NLS equation which admits envelope solitons. The envelope 
solitons discussed here are the bound states of n( = k / K )  quasiparticles represented by 
the plane waves in contrast to the two kink or soliton bound states which have been 
given various names: ‘mesons’ in the non-linear field theory of elementary particles 
(Perring and Skyrme 1962), ‘ O r ’  pulses in the self-induced transparency problems 
(Lamb 1971)’ ‘bions’ (Caudrey er a1 1973) and ‘doublets’ (Rajaraman 1975). In 
comparison with the doublets, these envelope solitons may be called ‘multiplets’. In the 
non-linear field theory of elementary particles the kinks correspond to extended or 
dressed particles and the mesons or bions or doublets are the bound states of two such 
particles. The constituents of the multiplets in our case are the plane waves which 
unlike the kinks do not carry the effect of the non-linearity and hence may correspond 
to ‘bare’ particles. 
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